35 research outputs found

    SMART (SiMulAtion and ReconsTruction) PET:an efficient PET simulation-reconstruction tool

    Get PDF
    Background: Positron-emission tomography (PET) simulators are frequently used for development and performance evaluation of segmentation methods or quantitative uptake metrics. To date, most PET simulation tools are based on Monte Carlo simulations, which are computationally demanding. Other analytical simulation tools lack the implementation of time of flight (TOF) or resolution modelling (RM). In this study, a fast and easy-to-use PET simulation-reconstruction package, SiMulAtion and ReconsTruction (SMART)-PET, is developed and validated, which includes both TOF and RM. SMART-PET, its documentation and instructions to calibrate the tool to a specific PET/CT system are available on Zenodo.SMART-PET allows the fast generation of 3D PET images. As input, it requires one image representing the activity distribution and one representing the corresponding CT image/attenuation map. It allows the user to adjust different parameters, such as reconstruction settings (TOF/RM), noise level or scan duration. Furthermore, a random spatial shift can be included, representing patient repositioning. To evaluate the tool, simulated images were compared with real scan data of the NEMA NU 2 image quality phantom. The scan was acquired as a 60-min list-mode scan and reconstructed with and without TOF and/or RM. For every reconstruction setting, ten statistically equivalent images, representing 30, 60, 120 and 300 s scan duration, were generated. Simulated and real-scan data were compared regarding coefficient of variation in the phantom background and activity recovery coefficients (RCs) of the spheres. Furthermore, standard deviation images of each of the ten statistically equivalent images were compared.Results: SMART-PET produces images comparable to actual phantom data. The image characteristics of simulated and real PET images varied in similar ways as function of reconstruction protocols and noise levels. The change in image noise with variation of simulated TOF settings followed the theoretically expected behaviour. RC as function of sphere size agreed within 0.3-11% between simulated and actual phantom data.Conclusions: SMART-PET allows for rapid and easy simulation of PET data. The user can change various acquisition and reconstruction settings (including RM and TOF) and noise levels. The images obtained show similar image characteristics as those seen in actual phantom data.</p

    Repeatability of 18 F-FDG PET radiomic features:A phantom study to explore sensitivity to image reconstruction settings, noise, and delineation method

    Get PDF
    BACKGROUND: 18 F-fluoro-2-deoxy-D-Glucose positron emission tomography (18 F-FDG PET) radiomics has the potential to guide the clinical decision making in cancer patients, but validation is required before radiomics can be implemented in the clinical setting. The aim of this study was to explore how feature space reduction and repeatability of 18 F-FDG PET radiomic features are affected by various sources of variation such as underlying data (e.g., object size and uptake), image reconstruction methods and settings, noise, discretization method, and delineation method.METHODS: The NEMA image quality phantom was scanned with various sphere-to-background ratios (SBR), simulating different activity uptakes, including spheres with low uptake, that is, SBR smaller than 1. Furthermore, images of a phantom containing 3D printed inserts reflecting realistic heterogeneity uptake patterns were acquired. Data were reconstructed using various matrix sizes, reconstruction algorithms, and scan durations (noise). For every specific reconstruction and noise level, ten statistically equal replicates were generated. The phantom inserts were delineated using CT and PET-based segmentation methods. A total of 246 radiomic features was extracted from each image dataset. Images were discretized with a fixed number of 64 bins (FBN) and a fixed bin width (FBW) of 0.25 for the high and a FBW of 0.05 for the low uptake data. In terms of feature reduction, we determined the impact of these factors on the composition of feature clusters, which were defined on the basis of Spearman's correlation matrices. To assess feature repeatability, the intraclass correlation coefficient was calculated over the ten replicates.RESULTS: In general, larger spheres with high uptake resulted in better repeatability compared to smaller low uptake spheres. In terms of repeatability, features extracted from heterogeneous phantom inserts were comparable to features extracted from bigger high uptake spheres. For example, for an EARL-compliant reconstruction, larger and smaller high uptake spheres yielded good repeatability for 32% and 30% of the features, while the heterogeneous inserts resulted in 34% repeatable features. For the low uptake spheres, this was the case for 22% and 20% of the features for bigger and smaller spheres, respectively. Images reconstructed with point-spread-function (PSF) resulted in the highest repeatability when compared with OSEM or time-of-flight, for example, 53%, 30%, and 32% of repeatable features, respectively (for unsmoothed data, discretized with FBN, 300 s scan duration). Reducing image noise (increasing scan duration and smoothing) and using CT-based segmentation for the low uptake spheres yielded improved repeatability. FBW discretization resulted in higher repeatability than FBN discretization, for example, 89% and 35% of the features, respectively (for the EARL-compliant reconstruction and larger high uptake spheres).CONCLUSION: Feature space reduction and repeatability of 18 F-FDG PET radiomic features depended on all studied factors. The high sensitivity of PET radiomic features to image quality suggests that a high level of image acquisition and preprocessing standardization is required to be used as clinical imaging biomarker.</p

    Mitigation of noise-induced bias of PET radiomic features

    Get PDF
    INTRODUCTION: One major challenge in PET radiomics is its sensitivity to noise. Low signal-to-noise ratio (SNR) affects not only the precision but also the accuracy of quantitative metrics extracted from the images resulting in noise-induced bias. This phantom study aims to identify the radiomic features that are robust to noise in terms of precision and accuracy and to explore some methods that might help to correct noise-induced bias. METHODS: A phantom containing three 18F-FDG filled 3D printed inserts, reflecting heterogeneous tracer uptake and realistic tumor shapes, was used in the study. The three different phantom inserts were filled and scanned with three different tumor-to-background ratios, simulating a total of nine different tumors. From the 40-minute list-mode data, ten frames each for 5 s, 10 s, 30 s, and 120 s frame duration were reconstructed to generate images with different noise levels. Under these noise conditions, the precision and accuracy of the radiomic features were analyzed using intraclass correlation coefficient (ICC) and similarity distance metric (SDM) respectively. Based on the ICC and SDM values, the radiomic features were categorized into four groups: poor, moderate, good, and excellent precision and accuracy. A "difference image" created by subtracting two statistically equivalent replicate images was used to develop a model to correct the noise-induced bias. Several regression methods (e.g., linear, exponential, sigmoid, and power-law) were tested. The best fitting model was chosen based on Akaike information criteria. RESULTS: Several radiomic features derived from low SNR images have high repeatability, with 68% of radiomic features having ICC ≥ 0.9 for images with a frame duration of 5 s. However, most features show a systematic bias that correlates with the increase in noise level. Out of 143 features with noise-induced bias, the SDM values were improved based on a regression model (53 features to excellent and 67 to good) indicating that the noise-induced bias of these features can be, at least partially, corrected. CONCLUSION: To have a predictive value, radiomic features should reflect tumor characteristics and be minimally affected by noise. The present study has shown that it is possible to correct for noise-induced bias, at least in a subset of the features, using a regression model based on the local image noise estimates

    <sup>18</sup>F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma

    Get PDF
    PURPOSE: Accurate prognostic markers are urgently needed to identify diffuse large B-Cell lymphoma (DLBCL) patients at high risk of progression or relapse. Our purpose was to investigate the potential added value of baseline radiomics features to the international prognostic index (IPI) in predicting outcome after first-line treatment. METHODS: Three hundred seventeen newly diagnosed DLBCL patients were included. Lesions were delineated using a semi-automated segmentation method (standardized uptake value ≥ 4.0), and 490 radiomics features were extracted. We used logistic regression with backward feature selection to predict 2-year time to progression (TTP). The area under the curve (AUC) of the receiver operator characteristic curve was calculated to assess model performance. High-risk groups were defined based on prevalence of events; diagnostic performance was assessed using positive and negative predictive values. RESULTS: The IPI model yielded an AUC of 0.68. The optimal radiomics model comprised the natural logarithms of metabolic tumor volume (MTV) and of SUV(peak) and the maximal distance between the largest lesion and any other lesion (Dmax(bulk), AUC 0.76). Combining radiomics and clinical features showed that a combination of tumor- (MTV, SUV(peak) and Dmax(bulk)) and patient-related parameters (WHO performance status and age > 60 years) performed best (AUC 0.79). Adding radiomics features to clinical predictors increased PPV with 15%, with more accurate selection of high-risk patients compared to the IPI model (progression at 2-year TTP, 44% vs 28%, respectively). CONCLUSION: Prediction models using baseline radiomics combined with currently used clinical predictors identify patients at risk of relapse at baseline and significantly improved model performance. TRIAL REGISTRATION NUMBER AND DATE: EudraCT: 2006–005,174-42, 01–08-2008. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00259-021-05480-3

    Predictive value of quantitative F-18-FDG-PET radiomics analysis in patients with head and neck squamous cell carcinoma

    Get PDF
    BACKGROUND: Radiomics is aimed at image-based tumor phenotyping, enabling application within clinical-decision-support-systems to improve diagnostic accuracy and allow for personalized treatment. The purpose was to identify predictive 18-fluor-fluoro-2-deoxyglucose (18F-FDG) positron-emission tomography (PET) radiomic features to predict recurrence, distant metastasis, and overall survival in patients with head and neck squamous cell carcinoma treated with chemoradiotherapy. METHODS: Between 2012 and 2018, 103 retrospectively (training cohort) and 71 consecutively included patients (validation cohort) underwent 18F-FDG-PET/CT imaging. The 434 extracted radiomic features were subjected, after redundancy filtering, to a projection resulting in outcome-independent meta-features (factors). Correlations between clinical, first-order 18F-FDG-PET parameters (e.g., SUVmean), and factors were assessed. Factors were combined with 18F-FDG-PET and clinical parameters in a multivariable survival regression and validated. A clinically applicable risk-stratification was constructed for patients' outcome. RESULTS: Based on 124 retained radiomic features from 103 patients, 8 factors were constructed. Recurrence prediction was significantly most accurate by combining HPV-status, SUVmean, SUVpeak, factor 3 (histogram gradient and long-run-low-grey-level-emphasis), factor 4 (volume-difference, coarseness, and grey-level-non-uniformity), and factor 6 (histogram variation coefficient) (CI = 0.645). Distant metastasis prediction was most accurate assessing metabolic-active tumor volume (MATV)(CI = 0.627). Overall survival prediction was most accurate using HPV-status, SUVmean, SUVmax, factor 1 (least-axis-length, non-uniformity, high-dependence-of-high grey-levels), and factor 5 (aspherity, major-axis-length, inversed-compactness and, inversed-flatness) (CI = 0.764). CONCLUSIONS: Combining HPV-status, first-order 18F-FDG-PET parameters, and complementary radiomic factors was most accurate for time-to-event prediction. Predictive phenotype-specific tumor characteristics and interactions might be captured and retained using radiomic factors, which allows for personalized risk stratification and optimizing personalized cancer care. TRIAL REGISTRATION: Trial NL3946 (NTR4111), local ethics commission reference: Prediction 2013.191 and 2016.498. Registered 7 August 2013, https://www.trialregister.nl/trial/3946

    Establishment of a self-propagating population of the African malaria vector Anopheles arabiensis under semi-field conditions

    Get PDF
    Background: The successful control of insect disease vectors relies on a thorough understanding of their ecology and behaviour. However, knowledge of the ecology of many human disease vectors lags behind that of agricultural pests. This is partially due to the paucity of experimental tools for investigating their ecology under natural conditions without risk of exposure to disease. Assessment of vector life-history and demographic traits under natural conditions has also been hindered by the inherent difficulty of sampling these seasonally and temporally varying populations with the limited range of currently available tools. Consequently much of our knowledge of vector biology comes from studies of laboratory colonies, which may not accurately represent the genetic and behavioural diversity of natural populations. Contained semi-field systems (SFS) have been proposed as more appropriate tools for the study of vector ecology. SFS are relatively large, netting-enclosed, mesocosms in which vectors can fly freely, feed on natural plant and vertebrate host sources, and access realistic resting and oviposition sites. Methods: A self-replicating population of the malaria vector Anopheles arabiensis was established within a large field cage (21 x 9.1 x 7.1 m) at the Ifakara Health Institute, Tanzania that mimics the natural habitat features of the rural village environments where these vectors naturally occur. Offspring from wild females were used to establish this population whose life-history, behaviour and demography under semi-field conditions was monitored over 24 generations. Results: This study reports the first successful establishment and maintenance of an African malaria vector population under SFS conditions for multiple generations (&gt; 24). The host-seeking behaviour, time from blood feeding to oviposition, larval development, adult resting and swarming behaviour exhibited by An. arabiensis under SFS conditions were similar to those seen in nature. Conclusions: This study presents proof-of-principle that populations of important African malaria vectors can be established within environmentally realistic, contained semi-field settings. Such SFS will be valuable tools for the experimental study of vector ecology and assessment of their short-term ecological and longer-term evolutionary responses to existing and new vector control interventions

    Incorporating radiomics into clinical trials: expert consensus on considerations for data-driven compared to biologically-driven quantitative biomarkers

    Get PDF
    Existing Quantitative Imaging Biomarkers (QIBs) are associated with known biological tissue characteristics and follow a well-understood path of technical, biological and clinical validation before incorporation into clinical trials. In radiomics, novel data-driven processes extract numerous visually imperceptible statistical features from the imaging data with no a priori assumptions on their correlation with biological processes. The selection of relevant features (radiomic signature) and incorporation into clinical trials therefore requires additional considerations to ensure meaningful imaging endpoints. Also, the number of radiomic features tested means that power calculations would result in sample sizes impossible to achieve within clinical trials. This article examines how the process of standardising and validating data-driven imaging biomarkers differs from those based on biological associations. Radiomic signatures are best developed initially on datasets that represent diversity of acquisition protocols as well as diversity of disease and of normal findings, rather than within clinical trials with standardised and optimised protocols as this would risk the selection of radiomic features being linked to the imaging process rather than the pathology. Normalisation through discretisation and feature harmonisation are essential pre-processing steps. Biological correlation may be performed after the technical and clinical validity of a radiomic signature is established, but is not mandatory. Feature selection may be part of discovery within a radiomics-specific trial or represent exploratory endpoints within an established trial; a previously validated radiomic signature may even be used as a primary/secondary endpoint, particularly if associations are demonstrated with specific biological processes and pathways being targeted within clinical trials
    corecore